中教数据库 > Applied Geophysics > 文章详情

基于剪枝贝叶斯神经网络的电阻率成像非线性反演(英文)

更新时间:2023-08-14

【摘要】针对传统神经网络在电阻率成像反演中存在的过拟合和易陷入局部极值等问题,提出了一种基于剪枝贝叶斯神经网络(PBNN)的非线性反演算法和一种基于K-medoids聚类的样本设计方法。在基于K-medoids聚类的样本设计方法中,利用观测数据的聚类结果提供先验信息构造神经网络的训练样本,从而有针对性地指导神经网络的训练过程;剪枝贝叶斯神经网络是在贝叶斯正则化的基础上,通过评估各隐节点对反演结果的影响来自适应确定神经网络的隐层结构,根据小样本条件下训练样本的先验分布特征,选择了基于广义平均的超参数αk来引导剪枝过程。通过与地球物理领域内其它常用的自适应正则化方法相比较,验证了本文算法的有效性。理论数据和实测数据反演的结果表明:该方法能够较好地抑制神经网络训练过程中噪声的影响,提高网络的泛化能力,其反演结果优于BPNN反演、RBFNN反演和RRBFNN反演以及传统的最小二乘反演。

【关键词】

10 2页 免费

发表评论

登录后发表评论 (已发布 0条)

点亮你的头像 秀出你的观点

0/500
以上留言仅代表用户个人观点,不代表中教立场
相关文献

推荐期刊

Copyright © 2013-2016 ZJHJ Corporation,All Rights Reserved

京ICP备2021021570号-13

京公网安备 11011102000866号